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ABSTRACT

Canonical correspondence analysis (CCA) is a multivariate method to elucidate the relationships
between biological assemblages of species and their environment. The method is designed to
extract synthetic environmental gradients from ecological data-sets. The gradients are the basis for
succinctly describing and visualizing the differential habitat preferences (niches) of taxa via an
ordination diagram. Linear multivariate methods for relating two set of variables, such as two-
block Partial Least Squares (PLS2), canonical correlation analysis and redundancy analysis, are
less suited for this purpose because habitat preferences are often unimodal functions of habitat
variables. After pointing out the key assumptions underlying CCA, the paper focuses on the
interpretation of CCA ordination diagrams. Subsequently, some advanced uses, such as ranking
environmental variables in importance and the statistical testing of effects are illustrated on a
typical macroinvertebrate data-set. The paper closes with comparisons with correspondence ana-
lysis, discriminant analysis, PLS2 and co-inertia analysis. In an appendix a new method, named
CCA-PLS, is proposed that combines the strong features of CCA and PLS2.

Introduction

People wish to know how human activity influences the fascinating diversity of
biological communities. Yet, this very diversity creates problems for the statistical
analysis of ecological observations: it implies a large number of species and a large
inherent variability. A set of community samples and associated environmental
measurements (e.g. water chemistry variables) typically yields an enormous
amount of noisy data which is difficult to interpret. Multivariate methods provide a
means to structure the data by separating systematic variation from noise (Gauch,
1982). Two important aspects distinguish ecological data from other noisy multi-
variate data. First, most species occur only in a subset of the samples; the data have
therefore the character of incidence data (1/0 indicating presence/absence) even if
abundance is measured quantitatively (e.g. number of individuals or biomass of
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each species present). Second, relationships between species and environmental
variables are generally nonlinear, and what is worse, even non-monotonic. Because
of Shelford’s law of tolerance (Odum, 1971) and the associated idea of niche-space
partitioning (Whittaker et al., 1973), species abundance or probability of
occurrence is often a unimodal function of the environmental variables. These two
aspects make traditional linear-based multivariate methods unsuitable. In contrast,
canonical correspondence analysis takes advantage of these aspects (ter Braak,
1986, 1987 a,b; Chessel et al., 1988).

Historically, canonical correspondence analysis builds on the method of weight-
ed averaging of indicator species proposed by the early great ecologists such as
Gause (1930), Ellenberg (1948) and Whittaker (1948: in Gauch, 1982), and widely
used in biological water-quality assessment (Pantle and Buck, 1955; von Tiimpling,
1966; Sladecek, 1986; Zelinkan and Marvan, 1961; Descy, 1979). It extends weight-
ed averaging to the simultaneous analysis of many species and many environmental
variables. Canonical correspondence analysis also builds on the ordination method
of reciprocal averaging, alias correspondence analysis (Hill, 1973, 1974; Hill and
Gauch, 1980). It adds to correspondence analysis the statistical methodology of
regression. The method thus provides a general framework for estimation and
statistical testing of the effects of environmental variables and other explanatory
variables on biological communities, even if the effects are hidden by other large
sources of variation. In summary, canonical correspondence analysis is a method
that can help aquatic ecologists unravel how a multitude of species simultaneously
respond to external factors, such as environmental variables, pollutants and
management regime, using data either from observational studies or from designed
experiments.

Canonical correspondence analysis (CCA) and related methodology has found
wide-spread use in aquatic sciences. The bibliography by Birks et al. (1994) lists
under the subject headings limnology, marine biology, and palaeolimnology 86, 25
and 49 papers, respectively. Organisms studied are (with number of entries between
brackets) diatoms (62), other algae (18), aquatic invertebrates (17), chrysophytes
(11), fish (11), phytoplankton (6), zooplankton (4), oligochaetes (3) and foramini-
fera (2). The most frequent use is to identify environmental gradients in ecological
data-sets (Barker, 1994), in particular, which environmental variables are important
in the determination of the community composition. Recent examples include
Jones, Juggins and Ellis-Evans (1993), Grantham and Hann (1994) and Malmqvist
and Maki (1994). In palaeolimnology, CCA is frequently used as a preliminary
analysis for determining whether particular variables influence the present-day
communities sufficiently to warrant palaco-reconstruction from fossil assemblage
data (Walker et al., 1991; Cumming, Smol and Birks, 1992; Anderson, Rippey and
Gibson, 1992; Fritz, Juggins and Batterbee, 1993; Charles and Smol, 1994). Al-
though CCA can be used for palaco-reconstruction (Stevenson et al., 1989), for
example by adding fossil assemblage data to a CCA ordination diagram of the
modern data (Birks, Juggins and Line, 1990a), more specialized methods are avail-
able (ter Braak and van Dam, 1989; Birks et al., 1990b; Anderson, 1993; Line, ter
Braak and Birks, 1994; ter Braak and Juggins, 1993; ter Braak, 1995a). CCA is also
a means of studying seasonal and spatial variation in communities (Snoejis and
Prentice, 1989; Bakker, Herman and Vink, 1990; Anderson, Korsman and Renberg,
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1994) and of assessing to what extent this variation can be explained by associated
environmental variation (Soetaert et al., 1994; Kautsky and van der Maarel, 1990).
The variance can be fully decomposed into seasonal, spatial, environmental and
random components (Borcard et al.,, 1992; @kland and Eilertsen, 1994). Copp
(1992) and Reilly and Fiedler (1994) used CCA for niche analysis. This use of CCA
has an early pre-cursor in the form of Green’s (1971, 1974) multi-group discriminant
analysis for quantifying the multivariate Hutchinsonion niche of species. CCA has
also been used in a number of impact studies (van Nes and Smit, 1993; Snoeijs,
1989; Gower et al., 1994) and for testing hypotheses about the effect of particular
water chemistry variables on community composition (Walker et al., 1991; Kingston
et al., 1992). Verdonschot (1989) used CCA for biological water-quality assessment
and related management problems. CCA can also be used for analyzing communi-
ty data from experiments (Sundbick and Snoeijs, 1991; Fairchild and Sherman,
1993; Verdonschot and ter Braak, 1994). In some advanced uses of CCA, itis a
powertful alternative for the multivariate analysis of variance (MANOVA; Ver-
donschot and ter Braak, 1994; van Wijngaarden et al., 1995), for example in the ana-
lysis of data from Before-After-Control-Impact studies (Green, 1979; Stewart-
Oaten, Murdoch and Parker, 1986; Carpenter, Frost and Heisey, 1989), both with
(Verdonschot and ter Braak, 1994) and without replication of the impacted site
(Underwood, 1992).

As an introduction to CCA, this paper summarizes how CCA identifies major
environmental gradients in ecological data-sets and how the analysis can focus on
the effect of particular environmental variables by partialling out nuisance variation
(partial CCA). This part of the paper follows ter Braak (1987a). Subsequently, an
attempt is made to single out the key assumptions underlying CCA by comparing
various derivations of CCA. Since 1987, the standard ordination diagram of CCA
has undergone some changes that aid interpretation. This is the first paper
to fully discuss the new standard (ter Braak, 1990), which follows and extends
proposals by Chessel et al. (1987), Lebreton et al. (1988a,b) and Greenacre (1993).
Thereafter, the paper introduces the method of ranking environmental variables in
importance by forward selection. The theory is exemplified using macroinverte-
brate data from two man-made tributaries of a Dutch lowland stream (Higler and
Verdonschot, in prep.). Additional insight into CCA is provided by contrasting it
with other multivariate methods, such as discriminant analysis, correspondence
analysis, two-block PLS and co-inertia analysis. CCA inherits many of its unimodal
properties from its close relationship to discriminant analysis. If more and more
environmental variables are added to CCA, the method becomes increasingly
similar to correspondence analysis, paradoxically a method that was designed to
work without environmental data! The problem of many environmental variables
also plays a major role in the comparisons of CCA with two-block PLS and co-
inertia analysis. In the appendix, a new method is proposed that attempts to com-
bine many strong points of these three methods. The discussion attempts to delimit
the role of CCA in the aquatic sciences.
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Example data

We analyze macro-fauna data from two man-made tributaries in the upstream part
of the Hierden stream, a well-studied lowland stream on the Veluwe, the Nether-
lands (Higler and Repko, 1981). The discharge area of the stream is situated in
fluvio-glacial deposits and the main source of water is diffuse ground-water
seepage. The aim of the study was to compare the macrofauna in the tributaries
which are similar in morphology, but different in nutrient load as a result of
differences in land use in the drainage area. As a proxy for nutrient load, electrical
conductivity (EC) is used. The distribution of the macrofauna in the tributaries will
be related to hydraulic, physical and chemical variables.

The two tributaries L. (Leuvenum stream) and U (Uddel stream) were sampled
from source to mouth in the Hierden stream at 21 and 19 different locations,
respectively. Sampling took place in five different months (Table 1) in the period
October 1983 — August 1984. Each location (henceforth called site) was sampled
once. In each of the months, as many upstream as downstream sites were sampled
and nearly as many L- as U-sites. At each site, material from the upper layer of the
sediment and the vegetation, if present, was collected over a 1 metre stretch along
the stream and over the total width of the stream. Simultaneously, material was
taken from the sediment for grain-size and organic-matter content analysis. The
vegetation, shading and current velocity were recorded. The electrical conductivity
(EC) was averaged across 3—4 measurements taken in the period January—June
1984. The environmental variables recorded are listed in Table 1. Three variables
are ordinal, but are treated quantitatively in CCA with the codings 0, 1, 2, 3, and so
on. Apart from the sampling month (five classes), there are two qualitative
variables that classify the bank vegetation and substrate in four and three classes,
leading to seven binary class variables. The classes of substrate are not mutually
exclusive; if the substrate is heterogeneous, more than one class was ticked. The
sample distribution of each quantitative variable was inspected for outliers and
strong asymmetry, but eventually the data were left unmodified. In the laboratory,
the animals in the sample material were sorted alive, identified and counted. The
number per taxon was logarithmically transformed so as to downweight large num-
bers. The problem of taking the logarithm of zero was circumvented by adding
1 to each number before transformation. In total, 197 taxa were identified. The
abundance table (Y in Fig. 1) thus contains 197 x 40 non-negative values; 84 % are,
however, zero. The number of taxa per site varies between 9 and 68. The number of
occurrences per taxon varies between 1 and 35. Many taxa occur only a few times
and could have been deleted without much influence on the analysis.

Theory of canonical correspondence analysis (CCA)
Ecological derivation: niche separation and CCA

In this section canonical correspondence analysis is introduced: the method
operates on (field) data on occurrences or abundances (e.g. counts of individuals)
of species and data on environmental variables at sites (Fig. 1), and extracts from
the measured environmental variables synthetic gradients (ordination axes) that
maximize the niche separation among species.
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Table 1. Example data: quantitative and qualitative environmental variables (a) and qualitative
covariables (b) recorded at 40 sites along two tributaries from the Hierden stream (sd: standard
deviation, min: minimum, max: maximum)

a. Environmental variables

Quantitative variables mean sd min max
Source distance (m) 953 513 25 1730
Stream width (m) 1.0 0.23 0.6 1.6
Stream depth (m) 0.12 0.09 0.05 0.45
Mean current velocity (m/s) 23.7 11.0 5.0 45.0
Electrical conductivity, EC (uS/m) 358 201 120 690
Discharge (m?3/s) 853 49.0 5 175
Cover percentage of:
algae 11.4 26.7 0 100
submerged vegetation 10.7 222 0 90
emergent vegetation 9.5 26.5 0 100
bank vegetation 38 8.4 0 40
Total cover percentage of vegetation 36.0 40.5 0 100
Soil grain size’ 2.5 0.6 1 3
Coverage of substrate? 1.7 1.4 0 7
Shading? 1.0 0.9 1 3
Qualitative variables frequency

Bank vegetation

Grassy 7
Hanging weedy 21
High weedy 5
Shrubs 7
Substrate
Coarse detritus 17
Fine detritus 31
Silt 3
b. Covariables frequency
Month of sampling:
October 1983 6
January 1984 8
April 1984 9
June 1984 9
August 1984 8

Levels and coding: coarse sand/gravel (1), coarse sand/fine sand (2), fine sand (3)

Levels and coding: none (0), local thin layer (1), spread thick layer (2), thin layer <2 cm (3),
mixed soil-substrate layer (4), less thick layer 2—5 cm (5), thick layer 5 cm (6), very thick layer
10cm (7)

* Levels and coding: none (0), low (1), average (2), high (3)

IS
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Figure 1. Data-tables in an ecological study on species-environment relations. Primary data are
the sub-table 1 of abundance values of species and the sub-tables 4 and 7 of values and class labels
of quantitative and qualitative environmental variables (env. var), respectively. The primary data
are input for canonical correspondence analysis (CCA). The other sub-tables contain derived
(secondary) data, as the arrows indicate, named after the (dis)similarity coefficient they contain.
The coefficients shown in the figure are optimal when the species-environment relations are uni-
modal. The CCA ordination diagram represents these sub-tables, with emphasis on sub-tables 5
(weighted averages of species with respect to quantitative environmental variables), 8 (totals
of species in classes of qualitative environmental variables) and 1 (with fitted, as opposed to
observed, abundance values of species). The sub-tables 6, 9 and 10 contain correlations among
quantitative environmental variables, means of the quantitative environmental variables in each
of the classes of the qualitative variables and chi-square distances among the classes, respectively.
See also Table 2 (Chi-sq. = Chi-square; Aver.= Averages; Rel. = Relative)

The occurrence or abundance of a species along an environmental gradient
often follows Shelford’s Law of Tolerance (Shelford, 1911; Odum, 1971): each
species thrives best at a particular value (its optimum) and cannot survive when the
value is either too low or too high. Each species’ occurrence is thus confined to a
limited range, its niche. The fundamental niche of a species is determined by
physiological processes and cannot normally be observed in the real world because
species coexist in communities. What can be observed is the realised niche as modi-
fied by competition among species and other intra-community processes. It is the
realised niche that is of interest in applied ecology. Species tend to separate their
niches, partly so as to minimize competition. If the separation is strong, successive
species replacements occur along the environmental gradient. The composition of
biotic communities thus changes along environmental gradients according to uni-
modal functions (Fig. 2). Of course, some species may prefer extreme environ-
mental conditions or their optima may fall outside the environmental region



Canonical correspondence analysis 261

Y

242£02

) 1 X

Uy U, Uy

Figure 2. Unimodal curves for the expected abundance or response (y) of four species against
an environmental gradient or variable (x). The optima, estimated by weighted averages, (u,) [k=1,
2, 3], of three species are indicated. The curve for the species on the left is truncated and therefore
appears monotonic instead of unimodal; its optimum is outside the sampled interval, but its
weighted average is inside. The curves drawn are symmetric, but this is no strict requirement for
CCA

actually sampled in a particular study, so that their observed response function is
not unimodal, but monotonic decreasing or increasing (Fig. 2). Hutchinson (1968)
extended the niche concept to p-dimensions. Each species thus occurs in a
characteristic, limited range of the multi-dimensional habitat space; and within this
range, each species tends to be most abundant around a specific environmental
optimum (Green, 1971). Of course, not all measurable features are equally
important and some features may perhaps be combined into a synthetic environ-
mental gradient so as to enhance the niche separtion along that gradient. Canonical
correspondence analysis is the method that extracts the “best” synthetic gradients
from field data on biological communities and environmental features: it forms a
linear combination of environmental variables that maximally separates the niches
of the species. Niche separation is hereby expressed as the weighted variance of
species centroids on a standardized gradient, the species centroid being the (weight-
ed) average of the gradient values of the sites at which the species occurs (Boxes 1
and 2). The species centroid, or weighted average, is an estimate of the species’
optimum if the response curve of the species is symmetric as in Fig. 2. The first syn-
thetic gradient is termed the first ordination axis. The achieved maximum amount
of niche separation is given by the eigenvalue of the ordination axis (Box 2). The
mathematics involved is given in ter Braak (1987a) and Jongman et al. (1995). Sub-
sequent ordination axes are also linear combinations of the environmental variables
that maximally separate the niches, but subject to the constraint that they are uncoz-
related with the axis or axes extracted previously. In principle, as many ordination
axes can be extracted as there are environmental variables, but because the amount
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Box1. The weighted average and standard deviation of a species.

The weighted average or niche-centroid (u,) of species k with respect to any gradient x
(environmental variable, synthetic gradient or ordination axis) is defined as the weighted
average of the gradient values of the sites at which the species occurs, i.e.

& Yik
u, = 2 —ux; 1
k i=1 Yk ! ( )

with y,, the abundance (0/1, count, biomass or other nonnegative value) of species k in site
i(i=1,...,n k=1,...,m), x, the value of gradient x at site / and the subscript “+” replacing an
index denoting the sum over the index, hence y,, is the abundance total across species in site 7.

The weighted standard deviation of a species (also termed its tolerance, a measure of
niche-breadth) is

fo= |3 2 (w2 @

i=1 Vik

The weighted standard deviation gives a good impression of the range of x-values over which a
species occurs, but underestimates the true tolerance or true niche-breadth. An extreme case is
that £,=0 if a species occurs only once. For a fair statistical comparison of niche breadth, the
bias must be removed. This can be achieved (as in Hill, 1979: p.28), by division in (2) by
¥..(1-1/N,) instead of by y_, with N, the effective number of occurrences of species k,

e[ 51"

i=1 y+k

Intuitively, if a species occurs at three sites with abundances 1000, 1, and 1, then its u, is ef-
fectively determined by the x-value of the site where the abundance is 1000, so that t,=0. The
effective number of occurrence is close to 1 (instead of being 3) and the N,-adjusted tolerance
is correspondingly large. For incidence data, the N,-adjusted tolerance is precisely the sample
(instead of: population) weighted standard deviation (Carnes and Slade, 1982: 892).

of niche separation (the eigenvalue) decreases with increasing axis number, it is
often sufficient to inspect only the first few axes. The computer program CANOCO
(ter Braak, 1987-1990) extracts only the first four ordination axes per run.

CCA adds the full power of regression methodology to ordination. This comes
about because CCA uses, as linear regression does, linear combinations of environ-
mental (explanatory) variables to explain optimally the species (response) variab-
les. The unusual features of CCA are that the measure of fit is unconventional
(weighted variance of species centroids) and that the data of many species are
explained simultancously. The consequences for the statistical analysis are dis-
cussed later on.

Covariables: partial CCA

The example macrofauna data were sampled in five different months. It is therefore
likely that there is considerable seasonal variation in the biological assemblage and
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Box 2. Definition of CCA by maximum niche separation.

For a standardized gradient x, i.e. a gradient for which

$=1 )
the weighted variance of species centroids {u#,} (k=1... m) of equation (1) is defined by

PR SRECER 5)

k
k=1 Yix g

Now let x be a synthetic gradient, i.e. a linear combination of environmental variables

xi = Z Cjzij (6)

ij=

with z,; the value of environmental variable j (j=1,...,p) in site { and ¢, its coefficient or weight
(not necessarlly posmve) Then, CCA is the method that chooses the optimal Welghts {e} e
the weights that result in a gradient x for which the weighted variance of the species scores
(5) is maximum. Mathematically, the synthetic gradient x can be obtained by solving an eigen-
value problem; x is the first eigenvector x, with eigenvalue the maximum A (ter Braak, 1987a).
The optimized weights are termed canonical coefficients. Each subsequent eigenvector
x,= (X, ..., X))’ (s>1) maximizes (5) subJect to constraint (6) and the extra constraint that it is
uncorrelated with previous eigenvectors, i.e. X, y,, X, x,,=0 (t<s).

the environment. This seasonal variation was not the prime research question,
however, and should therefore not enter the synthetic gradients. This can be achiev-
ed by a partial canonical correspondence analysis (partial CCA: ter Braak, 1988a)
with the five class variables representing sampling months as covariables. A partial
CCA amounts to a normal CCA, but with the extra requirement that each synthetic
gradient must be uncorrelated with the covariables. This requirement takes the
same form as that for a second or later axis in CCA, namely that it must be uncor-
related with previously extracted synthetic gradients. The covariables thus take the
role of extra gradients that are already extracted. Partial CCA is effective if the sets
of covariables and environmental variables are uncorrelated or show a moderate
correlation. Our example data were collected according to a reasonably balanced
sampling design, leading to very moderate correlations between seasonal variation
and other time-independent variation. The CCA example presented later on is a
CCA adjusted for seasonal variation, i.e. a partial CCA.

Assumptions and alternative derivations

This section contains some advanced material; readers may wish to skip to the
closing paragraph on first reading. Originally, CCA was derived as an approxima-
tion to maximum likelihood Gaussian ordination with linear external constraints
{ter Braak, 1986, 1988a). In this derivation, strong assumptions were used that are
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Box 3. CCA as a form of redundancy analysis.

Sabatier et al. (1989) and Lebreton et al. (1991) showed that CCA is a weighted form of
principal components analysis with respect to instrumental variables {z,} (Rao, 1964), alias
redundancy analysis, alias least-squares reduced-rank regression (ter Braak and Looman,
1994). In particular, the first ordination axis of CCA minimizes

_ YaYe 4 .y
L= ;Zk YieYir {yHy% 1 ukxi} @)

subject to constraint (6). On inserting (6) in (7), CCA is seen to be a regression method that
minimizes

_ yiky++ _ _ £ 2
L= % Yie Yir {yi'+'y'+‘k 1 i§ bjkzij} (8)

subject to the constraints
by = uc &)

The matrix of regression coefficients {b,,} is thus required to be of rank 1. With r ordination axes
(rank r),

yikY++ < 2
L= ) EALTAL N .
sz yz+y+k {yi+y+k 1 52::1 uksxzs} (10)

is minimized. Equivalently, (8) is minimized subject to the constraints

bjk = UGy F e T UG, (11

unlikely to hold true in applications. Because of this, Austin et al. (1994) and Austin
and Gaywood (1994) express concern about the validity of the method. Fortunate-
ly, CCA appears extremely robust to deviation from these assumptions and other
derivations do not necessarily rely on them. As always in statistics, with stronger
assumptions stronger optimally properties of a method can be proven. Clearly, the
ecological derivation of CCA in this paper requires minimal assumptions but on the
other hand only guarantees that the dispersion (weighted variance of species
centroids) is maximized. Equally undemanding in terms of underlying assumptions
is a derivation by Takane, Yanai and Mayekawa (1991), based on work by Heiser
(1987), in which CCA is a constrained unfolding method. Unimodality is the key
assumption in these derivations. Even this assumption is not needed. As Sabatier et
al. (1989) showed, CCA can be derived as a weighted form of the method of reduc-
ed rank regression (ter Braak, 1990a; ter Braak and Looman, 1994), which is also
known under the names of redundancy analysis and principal component analysis
with respect to instrumental variables (Rao, 1964). The key element in this deriva-
tion of CCA is that the relative abundance is a linear function of the environmental
variables (relative here means relative to both the site total and the species total,
i.e. y,./y,,v.,). This characterization (Box 3) is the basis of the least-squarer
properties and associated biplot interpretation of the CCA ordination diagram in



Canonical correspondence analysis 265

rows 1 and 8 of Table 2, as discussed in the next section. As unimodality and
compositional data often go hand in hand (ter Braak, 1995a), it emerges that the
common element in all these derivations is that CCA models compositional (i.¢.
relative) abundance data instead of the absolute abundance data.

To summarize this section in more ecological terms, CCA models relative
abundances. It thus takes the size of the sample taken at a site for granted. Usually
the alpha diversity of a sample increases with its size. CCA takes that aspect of
alpha diversity for granted and focuses, instead, on the beta-diversity (dissimilarity
among sites). Sometimes the trend in alpha diversity coincides with beta-diversity,
for example if species one by one disappear along a toxicity gradient. CCA is
capable of extracting such trends (Iwatsubo, 1984: theorem 2).

Ordination diagrams and their interpretation
Introduction, interpretation of the ordination axes

The primary result of a CCA is an ordination diagram, i.e. a graph with a coordi-
nate system formed by ordination axes (i.e. the synthetic gradients extracted by
CCA). As illustrated in Figure 3, a CCA ordination diagram may consist of the
following elements: points for species, sites and classes of qualitative environmental
variables, and arrows for quantitative environmental variables. There exist a
number of slightly different variants of the CCA diagram. In particular, axes may be
differentially magnified or compressed with respect to one another. The differences
in scaling of the diagram are unimportant if the eigenvalues of the axes are about
equal. Table 2 summarizes the properties of the two variants discussed in this paper.
We start with the species-conditional CCA biplot (third column of Table 2) which is
the new standard in the computer program CANOCO version 3.1 (ter Braak,
1990b). The standard in earlier versions, Hill’s scaling (second column of Table 2),
is briefly discussed later on in a separate subsection.

The new standard ordination diagram naturally follows from the ecological
derivation of CCA (Box 2), and is constructed and interpreted as follows. The co-
ordinates of the site points are the values (termed scores) of the sites on the two best
synthetic gradients (axes 1 and 2 in Fig. 3). Recall from the initial derivation of CCA
that each gradient is standardized to zero weighted mean and unit weighted
variance, and that species are represented by their niche centre along each axis, i.e.
by the weighted average of the axis-scores of sites in which they occur (Fig. 2). Con-
sequently, each species point in the diagram is at the centroid (weighted average) of
the site points in which it occurs. The species points thus indicate the relative loca-
tions of the two-dimensional niches of the species in the ordination diagram. In
principle, the niche breadths could be indicated also, namely by the weighted
standard deviation on each synthetic gradient (Box 1), but this is not done in Fig. 3.
From the definition of CCA, it would be natural to display the environmental
variables by the weights that each variable has in the linear combinations that form
the axes. With correlated environmental variables, these weights are often difficult
to interpret (ter Braak, 1986; Eriksson et al., 1995). Instead, quantitative environ-
mental variables are displayed by their correlations with the axes and qualitative
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Table 2. Sub-tables of Fig. 1 (row numbers) that can be displayed by two differently scaled
ordination diagrams in canonical correspondence analysis (CCA). Display is by the biplot rule
unless noted otherwise. Hill’s scaling (column 2) was the default in CANOCO 2.1, whereas the
species-conditional biplot scaling (column 3) is the default in CANOCO 3.1. The weighted sum of
squares of sites scores of an axis is equal to A/(1-1) with X its eigenvalue and equal to 1 in scaling
—1 and scaling 2, respectively. The weighted sum of squares of species scores of an axis is equal to
1/(1-1) and equal to X in scaling -1 and scaling 2, respectively. If the scale unit is the same of both
species and sites scores, then sites are weighted averages of species scores in scaling — 1 and species
are weighted averages of site scores in scaling 2. Tables in italic are fitted by weighted least-squares
(rel. =relative; env. = environmental; vars = variables; cl. = classes; — = interpretation unknown)

Scaling —1: focus on sites 2: focus on species
Hill’s scaling biplot scaling of CCA
1 species X sites® rel. abundances®® fitted rel. abundances®
2 species X species - chi-square distances¢
3 sites xsites turnover distances®® f

Quantitative env. vars:

4 sites X env. varsé - values of env. vars
5 species X env. vars weighted averages weighted averages
6 env. vars X env. vars effects? correlations

Qualitative env. vars:

7 sites x env. classes! membership* membership*

8 species x env. classes rel. total abund.*® rel. total abund.®

9 env. vars X env. cl. - mean values of env. vars
10 env. classes X env. cl. turnover distances® f

®

Site scores are linear combinations of the environmental variables. The adjective “fitted” must
be deleted if site scores are proportional to the weighted average of species scores, as in ter
Braak (1986, 1987a,b)

The centroid principle can be applied also if sites and species scores are plotted in the same units,
i.e. in scaling -1, species that occur in a site lie around it, whereas in scaling 2, the species’
distribution is centred at the species point

The biplot rule cannot be applied

In the definition of this coefficient, abundance must be replaced by fitted abundance values,
because CCA is correspondence analysis of fitted abundance values

No explicit formula known

Chi-square distances, provided the eigenvalues of the axes are of the same magnitude
Environmental scores are (intra-set) correlations in scaling 2; more precisely, the coordinate of
an arrow head on an axis (i.e. the score) is the weighted product-moment coefficient of the en-
vironmental variable with the axis, the weights being the abundance totals of the sites (y,,). The
scores in scaling —1 are {A(1-1)}"2 times those in scaling 2

Effect is defined as the change in site scores if the environmental variable changes one standard
deviation in value (while neglecting the other variables)

Enviromental points are centroids of site points

Via centroid principle, not via biplot
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Figure 3. Species-conditional triplot based on a canonical correspondence analysis of the example
macroinvertebrate datra displaying 13 % of the inertia (= weighted variance) in the abundances
and 69% of variance in the weighted averages and class totals of species with respect to the
environmental variables. The eigenvalues of axis 1 (horizontally) and axis 2 (vertically) are 0.35
and 0.17, respectively; the eigenvalue of the axis 3 (not displayed) is 0.13. Sites are labelled with
stream code (U, L) and are ranked by distance from the source (rank number within stream).
Species (triangles) are weighted averages of site scores (circles). Quantitative environmental
variables are indicated by arrows. The class variable shrub is indicated by the square points
labelled Shrub and No shrub. The scale marks along the axes apply to the quantitative environ-
mental variables; the species scores, sites scores and class scores were multiplied by 0.4 to fit in the
coordinate system. Only selected species are displayed which have N,>4 and small N,-adjusted
root mean square tolerance for the first two axes. The species names are abbreviated to the part in
italic as follows Ceratopogonidae, Dendrocoelum flacteum, Dryops luridus, Erpobdella testacea,
Glossiphonia complanata, Haliplus lineatocollis, Helodidae, Micropsectra atrofasciata, Micro-
psectra fusca, Micropterna sequax, Prodiamesa olivacea, Stictochironomus sp.
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environmental variables by the centroids of their classes. More precisely, the arrow
for an quantitative variable runs from the origin (centre) of the diagram to an arrow
head, the coordinates of which are the correlations of the variable with the axes.
A qualitative environmental variable consists of a number of classes that partition
the sites; each class is naturally represented by a point in the diagram, namely the
centroid of sites points belonging to the class. (The centroid is a weighted average,
the weight being the total abundance of a site).

The place of each element in the diagram already gives ample scope for inter-
pretation. For example, the positioning of the environmental variables in Fig, 3
shows that the first synthetic gradient (i.e. the main explainable variation in the
faunal composition) is positively correlated with the source distance (ca. 0.5) and
negatively with EC (ca. —0.5). The position and separation of the points for
“shrubs” and “no shrubs” along the first axis indicate that sites with positive scores
on the first axis (that lie at the right-hand site of the diagram) usually do not have
shrubs (they border more intensively farmed land). The two classes of sites (with
and without shrubs) thus differ systematically in faunal composition. The second
axis is strongly negatively correlated (ca. —0.95) with the discharge rate. The site
points are based on linear combinations of these environmental variables. For case
of interpretation of the configuration of the site points, each site is labelled by the
first letter of its stream name (L or Uj a distinction not used in the CCA) and its
ranked distance from the source. The L-sites are well separated from the U-sites in
the diagram, and thus differ in faunal composition, but the separation is much more
pronounced downstream than upstream.

Interpretation of species and site points

So far, interpretation focused on the synthetic gradients in conjunction with an
abstract notion of variation in faunal composition. In addition, the ordination
diagram can be interpreted in much more definite terms, namely in terms of the
data-tables used in the analysis and in terms of derived data-tables (Fig. 1). The
ordination diagram in Fig. 3 summarizes the main structure of all ten tables of
Fig. 1 (except the site X site table in the case when the ratio of eigenvalues of the
axes differs strongly from 1). Table 2 presents an exhaustive list which is discussed
sequentially in what follows.

The first three rows of the body of Table 2 concern the interpretation of the
species and sites configurations. According to row 1 of Table 2, species points and
site points jointly represent the species X site table of fitted relative abundances of
species in sites. This fitted table replaces the observed one, that CCA was applied
to (sub-table 1 in Fig. 1). It should therefore be possible to infer the approximate
relative abundances from the diagram. There is an ongoing discussion in the litera-
ture on how this should be done precisely (Greenacre, 1989, 1993; ter Braak, 1985).
This is no surprise, because there are at least four possible ways to infer the fitted
relative abundances from this variant of the CCA diagram: (1) by means of the
centroid principle, (2) the distance rule, (3) the biplot rule, and (4) the biplot rule
for compositional data. In the first instance, attention is restricted to the centroid
principle and the distance rule. These rules are easiest (but most qualitative) and
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are most pertinent to the ecological applications of (canonical) correspondence
analysis. Later on, a biplot rule, due to Greenacre (1993), is presented.

The centroid principle is as follows. Species are at the centroid of their niche, i.e.
at the centroid of the points for sites in which they occur. Therefore, sites that con-
tain a particular species are scattered around the point of that species. For example,
Erpobdella testaceae is, in Fig. 3, at the centre of the downstream Uddel sites; so its
distribution is centred on these sites. Similarly, the position of Micropterna sequax
in Fig. 3 shows that the distribution of this species is largely confined to the down-
stream Leuvenum sites.

The centroid principle can be extended a little towards a distance rule. Because
the centroid is actually a weighted average (with the weight being the abundance),
the sites close to the species point tend to have a higher abundance than sites far
from the species point. The inferred abundance of a species is thus maximal if the site
point coincides with the species point and decreases in all directions the farther away
the site point is. This is the distance rule, at least if the decrease is the same in all
directions. (In the diagram discussed here, the decrease is, however, somewhat
greater along the first axis than along the second axis, a difference that becomes
important if the first eigenvalue is more than, say, twice the second). For example,
from Fig. 3 we would infer that Prodiamesa olivacea has its maximum abundance in
sites L.11-1.14 and decreases more upstream and downstream in the Leuvenum
stream.

According to row 2 of Table 2, the species points among themselves represent
the species x species table of chi-square distances (sub-table 2 in Fig. 1). This is a
table that can be derived from the primary species X site table by a mathematical
formula. The table is square and symmetric and is therefore indicated by a lower
triangle in Fig. 1. The chi-square distance is a measure of the dissimilarity between
the abundance profile across sites of one species and that of another. The most
striking feature in the mathematical formula of the chi-square distance (Box 4) is
that it is the relative abundances that are being compared. Differences in total
abundance among species thus do not increase their dissimilarity as measured by
the chi-square distance. The rule for inferring the chi-square distance from the
diagram is simple: chi-square distance increases the further apart two species are in
the diagram. Species that are close are thus expected to be similar in their distribu-
tion across the sites, whereas species that are far apart are expected to be dissimilar.
Be aware that points that are close may show considerable dissimilarity if the

Box 4. Dissimilarity as measured by the chi-square distance.

The chi-square distance between the abundance profile of two species k and / is

ow={Zy=(" - =YY (12)

The chi-square distance between the abundance profile of two sites is defined analogously by
interchanging rows and columns of the matrix Y={y,, }.
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ordination fits badly, because the points may be far apart on ordination axes other
than the ones shown in the diagram. Points that are far apart can, however, be
trusted to be dissimilar.

The inter-sites distances are discussed now (row 3 of Table 2). If the eigenvalues
of the axes are of the same magnitude, distances among sites in the diagram reflect
the site X site table of chi-square distances (sub-table 3 in Fig. 1). This is another
table that can be derived from the primary species X site table by a mathematical
formula (Box 4). Note again from Box 4 that it is the relative abundances that are
being compared. Differences in total abundance among sites thus do not necessarily
increase the dissimilarity, although CCA may still pick up trends in species richness
(as shown for correspondence analysis by Iwatsubo, 1984). If the second eigenvalue
is a magnitude smaller than the first, the species-conditional distance diagram (last
column of Table 2) overemphasizes the distances among sites along the second axis.
Therefore, the approximation of chi-square distances among sites is not mentioned
in the last column of Table 2. For a better representation of the chi-square distance
among sites in Fig. 3, the second axis should be compressed with respect to the first
axis, namely by multiplying the site scores of the second axis by a factor of
(A, /A )V*=(0.17/0.35)¥2 = 0.70. This yields a site-conditional scaling. Fortunately,
this change does not influence the earlier global interpretation of between-site
differences in Fig. 3 in terms of stream (U versus L) and Source distance.

Interpretations based on the environmental arrows

Rows 4-6 of the body of Table 2 concern interpretations that use the arrows for
quantitative environmental variables. According to row 4 of Table 2, the site points
and the environmental arrows jointly represent the site X environmental variable
table, the second of the primary data-tables that CCA was applied to (sub-table 4 in
Fig. 1). The points and arrows form a biplot (Gabriel, 1982), that is an ordination
diagram with specific rules about how the points and arrows represent the data
entries in the table. The most useful rules are summarized in the following (for more
details see Gabriel (1982), Gabriel and Odoroff (1990), and ter Braak (1987b,
1994)). There is a useful symbolism in the use of arrows in biplots: the arrow points
in the direction of maximum change in the value of the associated variable, and the
arrow length is proportional to this maximum rate of change. In the perpendicular
direction the variable does not change in value. This is illustrated in Fig. 3 for the
variable Source distance, the arrow of which points South-South-East in Fig. 3. The
sites are labelled within stream by the rank number of distance from the source. The
rank number clearly increased most strongly in the direction indicated by the arrow.
(For example, look at the line from L1 to L21). The sites U16-U19 are close
and are therefore expected to be at about the same distance from the source. Site
L19 is inferred to be at about the same distance as the sites U16-U19, because
119 and U16 do not deviate much in the direction of the arrow. This is verified
geometrically by projecting the sites on the arrow. Although at about the same
distance from the source, L19 and U16 differ strongly in faunal composition;
this difference can be attributed to other environmental variables, notably EC. In
the ranking of the projection points, the origin (0,0) indicates the mean of the
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variable. In Fig. 3, L1-110 and U1-U9 are inferred to be at a smaller than average
distance from the source, whereas the remaining sites are inferred to be at a larger
than average distance. The inference is not always perfect. For example, by defini-
tion 120 is farther from the source than 119, but by projecting these sites on the
arrow for Distance the opposite is inferred. Generally, an ordination diagram does
not display a data-table exactly. It cannot do so, because it uses only two dimensions
whereas the data-table is usually multidimensional.

According of row 5 to Table 2, the species points and the environmental arrows
jointly represent the species x environmental variable table of weighted averages
(sub-table 5 in Fig. 1). This table summarizes the niche centres of the species along
each of the environmental variables. The points and arrows again form a biplot. By
projecting the species points on the arrow for EC in Fig. 3, we infer, for example,
that the species Dendrocoelum lacteurn and Erpobdella testacea have, of all the
displayed species, the highest weighted averages for EC and thus occur at high EC
values. Micropsectra fusca has a higher weighted average for EC than M. atro-
fasciata. In the ranking of projection points, the origin (0,0) indicates the global
average of the variable. Thus M. fusca largely occurs at higher than average EC
values and M. atrofasciata at lower than average values. The species close to
Micropterna sequax have the lowest weighted average for EC; they occur on
average at sites with low EC values.

An attractive feature of the diagram is that it takes the method of weighted
averaging literally in the following sense. Species points are weighted averages of
sites points, not only in the diagram as a whole, but also when projected on to any
particular environmental arrow. What we had so far is that the projection points for
sites and species display approximate values in sites and approximate weighted
averages of species for the corresponding environmental variable. But now we have
in addition that the projection points for species are exactly the weighted averages
of the displayed environmental values. The method of weighted averaging is thus
presented geometrically in the diagram.

According to row 6 of Table 2, the environmental arrows among themselves dis-
play the table of correlations among the quantitative environmental variables. This
is a derived table (sub-table 6 in Fig. 1) with weighted product-moment correlation
coefficients, the weights being the total abundances in sites. The arrows form a
biplot among themselves: correlations with a particular environmental variable are
inferred by projecting on the arrow the arrow heads of the other variables; the order
of the projection points then gives the inferred ranking of the correlations. In the
ranking, the origin (0,0} indicates zero correlation. Thus, projecting the arrow heads
for EC and Distance on the arrow for Discharge shows that Distance is stronger cor-
related with Discharge than EC, both correlations being positive. An alternative,
qualitative rule of interpretation is that the sign of a correlation coefficient between
two variables is inferred from the angle between their arrows: if the angle is sharp
the correlation is positive, if obtuse, negative (ter Braak, 1987b: 129).

Informally, the length of an environmental arrow indicates the importance of the
variable. More formally, (1) the length is equal to the multiple correlation of the
variable with the displayed ordination axes and thus indicates how well the values
of the variable are displayed in the biplot of sites and environmental variables; this
property follows from the facts that the coordinates of the arrow head are correla-
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tions with the axes and that the axes are uncorrelated; (2) the length is equal to the
maximum rate of change of the variable; variables with short arrows thus do not
vary much across the diagram, and (3) the length is equal to the size of the effect
that the corresponding variable has on the ordination scores while neglecting other
variables (ter Braak, 1994: 140). A later section discusses a method for ranking the
relative importance of environmental variables, which is not hindered by the fact
that the ordination diagram represents only a two-dimensional view of the species-
environment relationship.

Interpretations based on the environmental class points

Rows 7-10 of the body of Table 2 concern interpretations that use the points for
classes of qualitative environmental variables. According to row 7 of Table 2, the
points for sites and classes jointly represent the table of class memberships of sites.
This table is the third of the primary data-tables that CCA was applied to (sub-table
7 in Fig. 1). The data of quantitative and qualitative environmental variables are
usually supplied to CCA as a single environmental data-table; for interpretation
purposes it is, however, convenient to divide the table. Sites that belong to a parti-
cular class are scattered around the class point, simply because, by definition, each
class is at the centroid of the sites that it contains. This is yet another application of
the centroid principle. The inference is fuzzy; one does not know for sure from the
diagram to which class a site belongs.

A class stands for a group of sites. The class point is the weighted mean of the
site points that it contains. Therefore the rules given for the interpretation of site
points also apply to classes. If the environmental data consist of a single qualitative
variable, the points for classes and species in the CCA diagram are identical to those
obtained from a correspondence analysis applied to a table of species x classes, the
entries of which are the total abundance of each species in each class. If there are
more environmental variables, the class points in the CCA diagram are positioned
as if the CCA had been applied to such a table (i.e. neglecting the other variables).
The values of quantitative environmental variables are in this analysis the weighted
class means of the quantitative variables (the weights being the total abundances of
the sites). This is the clue to the understanding of the rows 8—10 of Table 2.

According to row 8 of Table 2, the points for species and classes jointly represent
the table of relative total abundances of species in classes (sub-table 8 in Fig. 1). The
interpretation is thus identical to the joint plot of species and site points.

According to row 9 of Table 2, the points for classes and arrows for quantitative
environmental variables jointly represent the table of mean values of the quantita-
tive variables in the classes (sub-table 9 in Fig. 1). In fact it is weighted means that
are displayed, with the weights being the site totals (y,,). The interpretation is
identical to the biplot of site points and environmental arrows.

Inter-class distances (row 10 of Table 2) should be interpreted in this variant of
the diagram with the same caution as for the inter-sites distances above (row 3 of
Table 2). If the eigenvalues of the axes are of the same magnitude, distances among
classes represent the class x class table of chi-square distances (sub-table 10 in
Fig. 1), calculated on the basis of the table of total abundances of the species in the
classes.
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Interpretation via the biplot rule

A surprising, paradoxically feature of this variant of the CCA diagram is that
species points together with the site points or the class points can not only be inter-
preted by the centroid principle, but also by the biplot rule. The diagram is a biplot
visualizing transformed abundances (e.g. Greenacre, 1984: 119; ter Braak, 1985)
Recently, Greenacre (1993) presented an alternative interpretation of this biplot,
namely in terms of the relative abundances {y,/y,,} and {y,./y,,}. The biplot rule
for this interpretation is as follows. Draw an arrow for a particular species, the kth
species, say, by connecting its point with the origin. This arrow points in the direc-
tion of maximum change in the relative abundance {y, /v, } (for a given species k).
After projecting the sites on the arrow, the order of projection points thus gives the
inferred ranking of the relative abundances {y,,/y,,}. The biplot thus displays the
share that this species has in the total abundance at each site. The role of species and
sites can be interchanged in the above rule, thus allowing inference about the
relative abundances {y,./y, . }. The biplot thus also displays the share each site has in
the total abundance of each species. The adjective “fitted” in Table 2 is a reminder
that the abundances are fitted to a model based on the environmental data; the
abundances are only displayed as far as they are fitted by this model (Lebreton
et al., 1991; Box 3).

All tables (except those of rows 2 and 7) in the last column of the Table 2 can be
visualized by the biplot rule in the CCA diagram. Because the diagram contains
three kinds of entities (sites, species and environmental variables), each pair of
which forms a biplot, it is a triplot (ter Braak, 1994; Smilauer, 1992, 1994). In addi-
tion, the distance rule can be applied per species, i.e. the diagram is species-condi-
tional. Therefore we propose to name the diagram a “species-conditional CCA
triplot”. The tables printed in italic in Table 2 are represented optimally as judged
by weighted least-squares critera (ter Braak, 1995b). The quality of display of
these tables is expressed by the percentage variance accounted (see the legend of
Fig. 3).

Ordination diagrams in Hill’s scaling

ter Braak (1986, 1987a,b) originally presented another variant of the CCA dia-
gram. This variant used Hill’s scaling (Table 2), also used in the program DECOR-
ANA (Hill, 1979; Hill and Gauch, 1980). It was the default in older versions of the
computer program CANOCO (version 2.1; ter Braak, 1988b). The two main points
of difference with the diagram discussed so far are (1) the species scores were
standardized to zero weighted mean and a weighted variance of 1/(1-A) with A the
eigenvalue of the ordination axis (instead of having variance 1) and (2) site points
were weighted averages of species points (instead of being a linear combination of
the environmental variables). For a discussion of the second point of difference see
Palmer (1993) and ter Braak (1994: 131). The old default is a site-conditional
distance diagram (ter Braak, 1994). The centroid principle then implies that the
species occurring in a particular site are scattered around the point of that site. In
contrast, in a species-conditional diagram, sites that contain a particular species are
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scattered around the point of that species. The asymmetry in interpretation (site-
conditional versus species-conditonal) went unnoticed in ter Braak (1987a,b),
despite early cautionary notes by Oksanen (1987) and Greenacre (1984: 181).

A diagram in Hill’s scaling has the advantage that the site scores are expressed
in “Standard Deviation units of species turnover” (SD). In this unit, sites that differ
by more than about 4 SD in score are expected to have few species in common (ter
Braak, 1987b) and the range of the site scores is a measure of beta diversity, termed
the length of gradient. In addition, species points are interpreted as optima of
response functions; species points could not be weighted averages of the site points,
because they would then always fall inside the sampled region, whereas nature is
likely to have placed some outside (Hill and Gauch, 1980). ter Braak (1987b: 103,
141) described how to obtain a diagram in Hill’s scaling from the CCA algorithm
(i.e. from a species-conditional CCA triplot). The properties of a diagram in Hill’s
scaling are summarized in Table 2. The only valid least-squares biplot is that of
species points and environmental arrows visualizing weighted averages.

The species-conditional CCA triplot is valid for more purposes (Table 2), it is
easier to use and it gives a more direct display of the weighted averaging principle
underlying CCA than a diagram in Hill’s scaling. Because environmental arrows are
displayed by correlations, the species-conditional CCA triplot is easier to interpret
quantitatively. These were the main reasons for adopting the species-conditional
CCA triplot as the standard in CANOCO 3.1.

Practical points

A CCA diagram does not need to contain all the elements (species, sites, environ-
mental variables). To avoid overcrowding of points, species and sites are often
shown in separate diagrams that can, in principle, be overlain. Alternatively, selec-
ted points or variables are displayed. Selection is based on personal judgement, or
is based on number of occurrence, total abundance, tolerance, or percentage fit.
The quality of the ordination diagram in displaying some of the tables in Fig. 1
(goodness-of-fit) is best described in the legend of the diagram (ter Braak, 1994).
Each eigenvalue of CCA can be converted to a percentage variance accounted for
by dividing the eigenvalue (x100) by the total inertia of the abundance data, inertia
being a measure of weighted variance that is closely related to the chi-square
statistic (Greenacre, 1984). This usage of the eigenvalues is not obvious from the
ecological derivation of CCA. This usage derives from CCA as a weighted form of
redundancy analysis (Sabatier et al., 1989; Box 3). For ecological data, the per-
centage-explained inertia is typically low (<10%), especially for strong gradients.
This is nothing to worry about; it is an inherent feature of data with a strong pre-
sence/absence aspect. As in applications of binary logit regression (Jongman et al.,
1995), the percentage-explained is not very informative, and is probably best left
unreported. Apparently, the importance of extracted gradients must be decided
upon by other means. Decision criteria include the magnitude of the eigenvalues
themselves (as a rule of thumb, eigenvalues >0.30 indicate strong gradients), the
statistical significance as judged by Monte Carlo permutation tests and, even more
importantly, the ecological interpretability. Each eigenvalue of CCA can also be
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divided by the sum of all CCA eigenvalues and converted to a percentage. This per-
centage has two interpretations: (1) it is the percentage variance accounted for
relative to the inertia of the fitted abundance values, and (2) the percentage
variance accounted for relative to the total variance in the species X environment
tables (sub-tables 5 and 8 in Fig. 1). These tables summarize the species x environ-
ment relations. In conclusion, the legend of the ordination diagram should contain
the values of the eigenvalues of the axes and the percentage accounted for of the
variance in the weighted averages and class totals (sub-tables 5 and 8 in Fig. 1).

In the example data, the first two eigenvalues are 0.35 and 0.17, the total inertia
is 4.0, whereas the sum of all CCA eigenvalues is 0.75. Fig. 3 thus displays
100 x (0.35+0.17)/4.0=13% of the total inertia and 100 x (0.35+0.17)/0.75=69%
of the variance in the weighted averages and relative class totals of these data. Con-
sequently, Fig. 3 is not very faithful in displaying the observed abundances, but
reasonably faithful in displaying the fitted abundance values, weighted averages
and class totals.

Although always applicable, the centroid principle is of limited use if CCA does
not strongly separate the species niches. As a rule of thumb the eigenvalues should
be at least 0.4. The first two eigenvalues for the example data (0.35 and 0.17) are
thus on the small side for interpretation via the centroid principle. The distance rule
applies in so far as CCA is a good approximation to the fitting of (circular) bell-
shaped response surfaces with the species scores being the optima (ter Braak, 1986).
For example, by fitting a Gaussian response surface across the diagram for Pro-
diamesa olivacea, we found that its optimum lies inbetween L9 and L20, rather far
from the point for this species in Fig. 3; also the tolerance is large. The fitting of
Gaussian surfaces is a standard feature of the computer program CanoDraw
(Smilauer, 1992, 1994).

If the eigenvalues are small, it is often attractive to magnify the configuration of
species points with respect to that of the samples. If configurations or diagrams are
in different scale units, the centroid and distance rules can no longer be used, but the
biplot rule can still be used in the CCA biplot or triplot. The biplot rule appears
more informative than the centroid rule with small eigenvalues, whereas the cen-
troid rule and the distance rule appear more informative when unimodality is strong,
as indicated by large eigenvalues (> 0.4, say) or large lengths of gradients (>4 SD).

Ranking environmental variables in importance

It is often of interest to rank environmental variables in their importance for deter-
mining the species composition. A related aim is to reduce a large set of variables
to a smaller set that suffices to explain the variation in species composition.
Environmental variables can be ranked and selected in CCA in very much the same
ways as predictors can be ranked and selected in (multivariate) regression. The
reason is that CCA is a form of multivariate linear regression on transformed data
(Sabatier et al., 1989; Lebreton et al., 1991; ter Braak et al., 1993; Box 3). The species
and environmental variables take the roles of response variables and predictor
variables, respectively. This does not mean that CCA and multivariate regression
would yield identical rankings. CCA aims to explain the variation in the species
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composition, i.e. in relative abundance values, whereas linear regression and related
linear methods such as redundancy analysis and PLS aim to explain the variation in
absolute abundance values.

Following suggestions by Escoufier and Robert (1979), the computer program
CANOCO version 3.1 offers the method of forward selection. In the first step of this
method, all environmental variables (including classes of qualitative variables) are
ranked on the basis of the fit for each separate variable. The measure of fit is the first
(and only) eigenvalue of the CCA with each one variable as the only environmental
variable. Recall from Box 2 that the eigenvalue measures niche separation. The first
column of Table 3 gives an example. For example, if CCA is applied to the example
macrofauna data with EC as the only environmental variable, the first eigenvalue
would be 0.20. The single variable giving the highest eigenvalue is the class variable
Shrubs (4=0.25). The statistical significance of the effect of each variable is tested
by a Monte Carlo permutation test (See Manly (1991) and ter Braak (1992) for an
explanation of such tests) and the resulting significance level is given in Table 3
(step 1). At the 5% level, eight of the environmental variables are significantly
related to the species data.

At the end the first step of the forward selection the best variable, here Shrubs,
is selected. Hereafter, all remaining environmental variables are ranked on the basis
of the fit that each separate variable gives in conjunction with the variable(s)
already selected. The measure of fit is the sum of all eigenvalues of the CCA with
each variable as the only additional environmental variable. The program reports
the “extra fit”, which is the change in the sum of all eigenvalues of CCA if the as-
sociated variable would be selected. (Eigenvalues of CCA are usually termed canon-
ical eigenvalues to distinguish them from eigenvalues of correspondence analysis;
see below). In the example, Source distance is the variable giving the highest change

Table 3. Ranking environmental variables in importance by their marginal (left) and conditional
(right) effects of the macrofauna in the example data-set (Table 1), as obtained by forward selec-
tion. (A, =fit =eigenvalue with variable j only; A,= additional fit=increase in eigenvalue; cum(,)
=cumulative total of eigenvalues A, ; P=significance level of the effect, as obtained with a Monte
Carlo permutation test under the null model with 199 random permutations; - additional variables
tested; veg. = vegetation). Seasonal variation is partialled out by taking the month class variables
as covariables

marginal effects (forward: step 1) conditional effects (forward: continued)

j variable A P j variable A, P cum ()
1 Shrubs (1/0) 025 (0.01) 1 Shrubs 025 (0.01) 025
2 Source distance 022 (0.01) 2 Source distance 019 (0.01) 044
3 EC 020 (0.01) 3 Discharge 0.19 (0.01) 0.63
4 Discharge 0.17  (0.01) 4 EC 0.14 (0.03) 075
5 Total cover of veg. 0.16 (0.01)

6 Shading 015  (0.01) - Cover emergentveg. 0.11 (0.10) -

7 Soil grain size 014  (0.02) — Cover bank veg. 011 (0.12) -

8 Stream width 0.14  (0.05) - Soil grain size 010 (0.13) -

9 High weedy veg. 014 (0.08)

10 Cover bank veg. 013 (0.11)

U vs L stream 022 (0.01) — U vsLstream 0.09 (0.26) -
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(0.19). Notice that when taken singly (column 1 of Table 3) Source distance has a
somewhat higher eigenvalue. This is because part of the effect of Distance is already
explained by the variable Shrubs. The extra fit gives the conditional effect of
Distance (namely given Shrubs), whereas the value in the first column gives the
marginal effect, i.e. ignoring the other variables. The conditional effect is statisti-
cally significant (P <0.01) as judged on the basis of a Monte Carlo test (199 random
permutations). So in the second step, the variable Distance is selected.

The third and later steps in the forward selection proceed in the same way as
the second one. In the example, the third and fourth best variables are Discharge
and EC, respectively. Both have significant conditional effects. Notice the change in
order compared with the marginal effects. The fifth variable to be selected, Cover
of emergent plants, is not statistically significant (P>0.11), neither are other
variables with an extra fit of comparable magnitude.

The stream name (U-L) was not used as selectable predictor variable, because
we were interested in which measured variables could account for the differences in
macrofauna composition among the streams. The class variable stream name would
be ordered second among the marginal effects with an eigenvalue of 0.22. As judged
by the Monte Carlo test, macrofauna composition differed significantly among the
streams (P<0.01). After selecting four variables (Table 3), stream name could
contribute 0.09 to the sum of the eigenvalues, but the additional effect was non-
significant (P =0.26). In conclusion, the four selected variables well explained the
differences in macrofauna compositon among streams. The CCA ordination
diagram with these variables is shown in Fig. 3.

The Monte Carlo tests replace the usual F- or t-tests in forward selection in
multiple regression. The Monte Carlo test does not require the assumptions of
normality. None of these tests controls the overall type I error. See Miller (1990: 50)
for a discussion of this point and for a rough Bonferoni-type adjustment. In practical
terms, this means that variables that are irrelevant will too easily be judged signi-
ficant.

In the forward selection example (Table 3) the month class variables were
specified as covariables. The secasonal variation was thus already accounted for. It is
of some interest to compare the amount of seasonal variation with that of the
environmental variation (cf. Sabatier et al., 1989). The sum of eigenvalues associat-
ed with months only is 0.58. The four selected variables add another 0.75. The
environmental variation is thus of the same order of magnitude as the seasonal
variation.

Because the sampling design is (nearly) balanced, each source of variation has
an (almost) unique associated amount of variation. Variance decomposition for
unbalanced data, i.e. in a general regression situation, is very interesting, but more
complicated (Borcard et al., 1992; @kland and Eilertsen, 1994).

Relationships with other multivariate methods
Relationships with discriminant analysis

Canonical correspondence analysis has an early precursor in the ecological litera-
ture in the form of Green’s (1971, 1974) multi-group discriminant analysis for quan-
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tifying the multivariate Hutchinsonion niche of species. Green’s method appeared
rather ad-hoc and lacked a solid statistical basis (James and McCulloch, 1990).
After critical discussions on particular proposals for measuring niche breadths
(summarized by Carnes and Slade, 1982) interest in Green’s method was lost, ironi-
cally in the same period in which the ordination method of correspondence analysis
surged in popularity. At the time nobody recognized the relationship between the
methods; the aims and domains of applications were different. Chessel et al. (1987)
and Lebreton et al. (19882a) recognized the formal equivalence between canonical
correspondence analysis and discriminant analysis on reformatted data (see also
Takane, Yanai and Mayekawa, 1991). The details are as follows.

The derivation of canonical correspondence analysis is very similar to that of
multi-group (linear) discriminant analysis, alias canonical variate analysis. Multiple
discriminant analysis (Rao, 1952; Krzanowski, 1988; McLachlan, 1992) works on
measurements of features on individuals belonging to different groups. The usual
aim is to assign new individuals with unknown group membership to groups on the
basis of the measured features, It is often convenient for explorative purposes to see
whether the groups can be discriminated in less dimensions, i.e. on a few synthetic
features. For this, the method finds canonical variates, that are linear combinations
of the features that show maximum discrimination among groups, or in other words,
that maximally separate the groups. Plotting the scores of the individuals on the first
two canonical variates helps to see how well the groups can be discriminated.
Replacement of “groups” by “niches of species” in the above yields similar defini-
tions for discriminant analysis and canonical correspondence analysis. But there is
an important difference: with discriminant analysis, the features of individuals are
measured, whereas with canonical correspondence analysis, it is the (environ-
mental) features of sites that are measured. Suppose now that the species data for
CCA are counts of individuals at sites. Then the link between the methods can be
completed by treating each individual counted as a separate unit, i.c. as a separate
row in the data-table; see Lebreton et al. (1988a) for an example. The data for each
individual counted are then the species to which it belongs and the measurements
of the features of the site at which it occurs. Multi-group discriminant analysis
carried out on data brought in this form is identical to canonical correspondence
analysis (Lebreton et al., 1988a). There are minor differences in the default output.
For example, if the eigenvalue of canonical correspondence analysis is A, then the
corresponding eigenvalue of the discriminant analysis if 2/(1-1) (ter Braak, 1988b:
section 9.5); the scores of species and of the sites are linearly related. The scaling of
the scores as used in discriminant analysis is a variant of Hill’s scaling in (canonical)
correspondence analysis (ter Braak, 1988b; Jongman et al., 1995: 103). It has the
advantage that the mean within-species variance is equalized across dimensions, but
also some disadvantages for quantitative interpretation of the ordination diagram.
The difference with the standard Hill scaling (the first column of Table 2) is that the
standard ordination diagram of discriminant analysis is not site-conditional but
species-conditional (species points as weighted averages of site points).

Green (1974) proposed a multivariate niche analysis with temporally varying
environmental factors. Our macrofauna data sampled in different months form an
obvious example. The analysis by Green (1974) is identical to a partial canonical
correspondence analysis applied to presence/absence data.
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In summary, the main difference between CCA and discriminant analysis is that
the unit of the statistical analysis in discriminant analysis is the individual, whereas
it is the site in CCA. This is important for the way in which statistical tests need to
be carried out. The statistical tests designed for discriminant analysis, as used by
Green (1972, 1974), are invalid in the context of CCA, because these ignore the
grouping of individuals within sites. Valid statistical tests can be based on Monte
Carlo permutation of sites (instead of individuals) and are standard in the computer
program CANOCO (ter Braak, 1988b).

Relationships to correspondence analysis (CA)

If in a particular study only biological assemblage data were collected, CCA cannot
be applied. Nevertheless, one might want to construct a hypothetical, synthetic
variable that maximises niche separation. This is what correspondence analysis
does; it constructs the best variable “out of blue water” (from the species data only).
In contrast, CCA constructs the best, synthetic variable by linearly combining the
measured environmental variables. This has the advantage that the environmental
basis of the ordination is guaranteed in CCA. There is one snag to this guarantee: if
there are almost as many environmental variables as sites, the environmental basis
may become very unstable or nonsensical, and CA and CCA produce about the
same site and species ordination (ter Braak, 1986, 1987 a). This is because CCA con-
siders all linear combinations of the many variables and therefore has almost as
much freedom as CA to construct the best variable, if there are many environ-
mental variables compared to the sample size. The distinction between CA and
CCA is thus nontrivial only with far fewer environmental variables than sites.

In the example data, there were 40 sites and 25 environmental variables. With
this high number of environmental variables compared to the sample size, there is
a great danger that CCA produces a noninterpretable environmental basis. This
was the main reason for carrying out the forward selection of environmental
variables. The selection reduced the number of environmental variables to a man-
ageable number and, in addition, gave additional information on the importance of
each of the variables.

Relationships to two-block PLS

PLS (Partial Least Squares Projection to Latent Structure) can be applied to the
same type of primary input data as CCA (Fig.1). If applied to two data-tables,
PLS yields a model for predicting one data-table from the other. PLS originated
with Herman Wold (1982) in econometrics as a “poor-man’s-alternative” to struc-
tural equation modelling (e.g. LISREL, Saris and Stronkhorst, 1984; Lohmuller,
1988). It was developed by Harald Martens and Svante Wold for calibration and
prediction in chemometrics (Geladi, 1988). In these later developments the earlier
mode A, B and C methods (H. World, 1982) were integrated in a smart way into a
single algorithmic framework. Cross-validation became an important tool. The
following discussion applies to PLS as used in chemometrics (Hoskuldsson, 1988;
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Martens and Naes, 1989). After listing some similarities between CCA and PLS, we
list the most importance dissimilarities among the methods. This section concludes
with the key ideas needed for integrating members of the correspondence analysis
family into the PLS framework.

CCA shares several properties with PLS. The methods are both asymmetric:
species abundance is modelled as a function of the environmental variables. Both
are thus regression methods. Both methods use the ideas of latent variables (the
ordination axes, components or synthetic gradients), dimension reduction and asso-
ciated graphical display (the ordination diagram). In both methods the latent
variables are linear combinations of the environmental variables. Both methods are
suited to analyze uncorrelated environmental variables, or variables that show a
moderate amount of correlation. Both methods can meaningfully analyze any num-
ber of species, irrespective of the sample size # (the number of sites). The associa-
tion or correlation (+ or —) among species may be arbitrarily high without affecting
the usefulness of the results. The prize paid for this is that neither method is
invariant to linear transformations of the species variables. If the abundance
measurements are not commensurate (counts for one species, biomass for another,
for example), the units in which each species abundance is expressed, need careful
consideration in both methods. In CCA, one may want to equalize the abundance
total per species (divide by the abundance total of each species). In PLS, species
could be standardized to zero mean and unit variance (autoscaling).

CCA differs in some important aspects from PLS. Most importantly, the model
underlying CCA is unimodal, whereas it is linear in PLS. The response data in CCA
must be nonnegative; the data are abundances (e.g. counts or presence-absence) or
compositional data, in the sense that only relative values are meaningful (ter Braak,
1988a, 1995a,b). Typical response data in PLS are quantitative (be they positive or
negative, without special meaning attached to the value 0). PLS shares these dif-
ferences with redundancy analysis (RDA), the linear analogue of CCA (ter Braak
and Prentice, 1988; ter Braak, 1994). PLS is identical to RDA, if the predictor
variables are uncorrelated, as in many designed experiments (e.g. Data set III in
Eriksson et al., 1995).

PLS is a biased regression method. It aims primarily at prediction. CCA and
RDA are based on unbiased regression. By providing a least-squares fit, they aim
primarily at explanation and efficient description. This is also the difference
between PLS and multiple regression (Eriksson et al., 1995). However, unbiased
regression methods predict poorly if the predictor variables are very highly corre-
lated (multicollinear), which happens trivially if the number of environmental
variables (p) is of the same order of magnitude as the sample size n. PLS contains
a special guard against multicollinearity. In this sense PLS is akin to ridge regres-
sion (de Jong and Farebrother, 1994). The first PLS component acts as if the
environmental variables were uncorrelated (Frank and Friedman, 1993), and later
components bring in more of the correlations among variables. If the number of
components is maximal, PLS is identical to unbiased multivariate regression. The
crux of PLS is the selection of the number of components so as to minimize the
prediction error. This is done by cross-validation. The chosen number of com-
ponentis minimizes the prediction error as estimated by cross-validation. In contrast,
the environmental weights of the first component (axis) in CCA and RDA are
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already adversely affected by multicollinearity among the environmental variables.
If environmental variables are highly correlated in CCA and RDA, the weights
become instable and uninterpretable (but nevertheless the axes remain stable). For
this reason, it is standard practice to abstain from interpreting weights and to focus
on the correlations of the environmental variables with the axes as in Table 2 and
Fig. 3. These still indicate how individual variables influence the species. The first
two components of RDA generally extract more variance of the species data than
the first two components of PLS. The ordination diagram thus displays (describes)
more of the data. But, under the conditions that are favourable for PLS (notably if
p>n), some or all of the displayed correlations with the environment may be
spurious. The possibilities and limitations of interpretation of CCA are then pre-
cisely those of an indirect gradient analysis (carrying out a CA on the species data
and subsequently interpreting the components in terms of the environmental data;
see also the previous section on the relation with CA). With many environmental
variables, there is a real danger of over-interpretation. Some statisticians require
here the application of simultaneous testing procedures to counter the danger. The
solution that PLS offers is to focus on prediction and associated procedures of cross-
validation, rather than on statistical significance. With CCA and RDA, the solution
must be sought by first invoking other methods that reduce the number of environ-
mental variables. We used forward selection of variables in the example. A possibil-
ity that is more in line with the ideas of PLS and principal component regression
(PCR), is to apply a preliminary principal component analysis to the environmental
data and to treat the first few components of this analysis as the new environmental
variables in CCA (Ruse, 1994). Most biologists are, however, not really interested
in species relations to abstract environmental variables like principal component
axes. This objection can be alleviated by adding the original environmental
variables afterwards to the ordination diagram. This can be done in such a way that
the biplot interpretations given in Table 2 continue to hold true. The program
CANOCO contains facilities for carrying out the required analyses. We did not do
so in the example; it might have increased the predictive properties of the analysis,
but would have decreased our understanding of the major variables in the system.
Dimensionality often plays a different role in CCA and PLS. CCA and RDA
aim to visualize the data in an ordination diagram. Two-dimensional diagrams are
the easiest to construct and to inspect, leading to a strong bias for using two dimen-
sions only. This may be too many or too few. To guard against interpretation of
spurious axes, tests of statistical significance can be used. With the program
CANOCO, the statistical significance of the first axis can be tested by a Monte
Carlo permutation test. The significance of each additional axis can be judged
similarly by carrying out a partial CCA with the previously tested axes as (extra)
covariables. In the example data, both axes displayed in Fig. 3 were statistical signi-
ficant (P<0.01). Two more axes were significant and thus potentia:ly contained
interesting structure. These axes added detail to the main structure displayed in
Fig. 3. We decided not to display the extra axes, because the effects that we wanted
to demonstrate are already convincingly displayed in Fig. 3. The seasonal effects
(treated as covariables) were not displayed either for lack of space. The use of
covariables allowed us to display the effects of prime interest in two dimensions.
The bias towards the usage of one or two dimensions probably also applies to PLS,



282 ter Braak and Verdonschot

as far as PLS is used for producing ordination diagrams (such as Fig. 15 in Eriksson
et al., 1995). More commonly, however, PLS focuses on prediction. Then, dimen-
sions are added as long as they increase the predictive power of the model. Because
a computer program is used to make the predictions, there is no other limit to the
number of dimensions.

A technical difference between PLS and CCA is that CCA is invariant to linear
transformations of the environmental variables. The display of standardized
variables in the ordination diagram is for convenience; it does not affect other
aspects of the analysis. In PLS, standardization (autoscaling) of variables has a
nontrivial effect on the result.

As shown in the appendix, it is quite straightforward to combine the best of the
worlds of PLS and CCA. The key ingredients for this are presented in ter Braak et
al. (1993): whereas PLS selects linear combinations of species variables with certain
optimal properties, CCA-PLS takes weighted averages with certain optimal
properties. In principle, the method does not require a special computer program.
We hope to give more details and an example elsewhere.

The aim of CCA-PLS is to predict the species data from the environmental data
in accordance with the supposed causal flow: species respond to the environment.
For the purpose of multivariate species-environment calibration, ter Braak et al.
(1993) turned the problem upside down: the environment was to be predicted from
the species data. For this aim, the ideas of correspondence analysis, weighted aver-
aging and PLS were combined into a technique called Weighted Averaging Partial
Least Squares (WA-PLS). The predictive power of this method was demonstrated
on real and simulated data by ter Braak and Juggins (1993), ter Braak et al. (1993)
and ter Braak (1995a).

Relationships to co-inertia analysis

Dolédec and Chessel (1994) proposed co-inertia analysis as a simple method for
analyzing species-environment data with many species and many environmental
variables. Co-inertia avoids the problems that CCA has with many environmental
variables by totally disregarding the correlations among environmental variables.
The methods amounts to an analysis of the species-environment sub-tables
(Table 2) by a singular value decomposition. For the comparison of the singular
value decomposition of such cross-product tables with PLS see de Jong and ter
Braak (1994). The first axis of co-inertia analysis is identical to that of CCA-PLS. In
contrast to PLS and CCA, co-inertia treats species and environmental data in a
quite symmetric way; it analyzes covariation; there are neither regression models
nor prediction models involved. From co-inertia ordination diagrams, one can infer
about weighted averages and relative class totals, and less about the other tables.
In co-inertia analysis, the more members a group of correlated environmental
variables contains, the more the group is emphasized. Group size has less influence
in CCA and CCA-PLS.
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Discussion

The example data were collected to study the direct and indirect effects of intensive
agricultural land-use on the macro-invertebrates in two morphologically similar
streams. Agricultural land-use implies soil fertilization and thus eutrophication,
here expressed by the electrical conductivity (EC). But it also implies increased run-
off through improved drainage. As is well-known, increased discharge fluctuations
have a major effect on the macro-invertebrate community through changes in
discharge regime, current velocities, morphological structure of bottom and banks
and erosion and siltation. The Uddel stream had, on average, a higher discharge and
much stronger discharge fluctuations than the Leuvenum stream. Qur analysis
(Table 3) confirmed the effect of discharge on the macro-fauna community and
demonstrated the additional effect of EC. Despite eutrophication and disturbed
hydraulics, both streams showed a gradient from source to mouth, as indicated by
the variable Source distance.

In classic pollution studies, the response of macro-invertebrates to eutrophica-
tion was mostly indicated by the use of a diversity, saprobic or biotic index
(Washington, 1984). Studies on the relation of macro-invertebrates and discharge
regimes or distances to source, reviewed by Hawkes (1975), mostly used non-
numerical methods to highlight river zonation and to arrange species to zone
classes. Some authors also used numerical methods, in particular, cluster analysis,
for this. CCA allows eutrophication and zonation to be studied simultaneously.
It produces an ordination diagram in which species, sites and environmental
variables are arranged in a single diagram. The diagram serves to represent con-
cisely the main results.

Canonical correspondence analysis and other members of the correspondence
analysis family have their own niche in the space of available multivariate methods.
Their usage is recommended if two or more of the following criteria are satisfied:
(1) relationships are unimodal, (2) the data have positive values, but contain many
zeroes or (3) the data are compositional in the sense that relative values are relevant
to the problem. For many ecological data-sets in the aquatic sciences at least two of
these criteria are fulfilled. Criterion (2) nearly always applies, but now suppose that
trends in absolute abundance values are relevant to the problem at hand. Because
of the zeroes, non-linear or generalized linear models are then required, but their
multivariate extensions are not yet available for routine application. Canonical
correspondence analysis is available and can take care of the nonlinearity caused
by the zero values, but focuses on relative abundance values. Our suggestion is
then to apply univariate regression to analyze the total abundance across species
and to apply canonical correspondence analysis for the analysis of the community
composition.

Appendix: On the PLS form of CCA

It is quite straightforward to combine the best of the worlds of PLS and CCA. The
key ingredients for this are presented in ter Braak et al. (1993): whereas PLS selects
linear combinations of species variables with certain optimal properties. CCA-PLS
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takes weighted averages with certain optimal properties. In the following matrix
algebra, sites correspond to rows (in contrast to Fig. 1). Let X* and Y* denote the
predictor matrix and response matrix, respectively. In particular, the first compo-
nent of PLS selects linear combinations of the environmental variables and of the
species data, t*;=X* w* and t*;=Y* ¢*, respectively, that have maximum covari-
ance, subject to the constraints w*w*=¢*¢*=1. The second and further com-
ponents also maximize the covariance, but subject to the constraint that both the
new t*; and the new t*; are orthogonal to the environmental components
{t*gs t¥5,, ..}, that are already extracted (the orthogonality requirement replaces
the calculation of residual matrices at each step in the usual PLS algorithms
(Martens and Naes, 1989); note that orthogonality must be with respect to the
environmental components, hence the asymmetry in PLS, see de Jong and ter
Braak, 1994). For defining CCA-PLS, let X and Y denote the environmental data
and species data, respectively, and let R=diag(y,,,...,y,,) and K=diag(y,,,...,
Y.) With y,, and y_ the total abundance in site i and per species k, respectively. The
first component of CCA-PLS can now be defined as selecting the linear combina-
tion of the environmental data, t,=Xw, and the weighted average of the species
data, t;=R' Y u, that have maximum covariance in the metric defined by R, i.e.
maximum tg’R tg, subject to the constraints w’w=u’Ku =1. The second and further
components also maximize the covariance, but subject to the constraint that both
the new t; and the new tg are R-orthogonal to the environmental components that
are already extracted. As in PLS, the maximization to obtain the subsequent
components in CCA-PLS amounts to solving subsequently for the first singular
vectors of certain cross-product matrices. Alternatively, a NIPALS algorithm akin
to the iterative algorithm of CCA (ter Braak, 1986) can be used. Fortunately, no
special computer program is required to obtain the solution. The following three
steps yield the solution: (1) preprocess X and Y as in ter Braak et al. (1993: (2.5)),
i.e. R-centre X, so that 1’ RX =0, and calculate

Y#=R12Y K- and X*=R"X, (A1)

and (2) carry out a PLS2 without additional centring or standardization with Y* as
response matrix and X* as predictor matrix so as to obtain for each component the
X-scores t*p, the Y-scores t*g, the X-weights w*, the Y-weights ¢* and the
X-loadings p*, the Y-loadings q*, and (3) postprocess these results so as to obtain
for each component the corresponding entities for CCA-PLS

u = K¥e* q=K1 q*and tg= R 172 t*, (A2)
and
w=w* p=p*andty= R t¥. (A3)

The proof is analogous to that in the Appendix of ter Braak et al. (1993). By
reformatting the data as in the section on the relation of CCA with discriminant
analysis, CCA-PLS can also be obtained as the PLS version of discriminant analysis
(DA-PLS, i.e. PLS in which the response matrix is an indicator matrix of the group
memberships).
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